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In the study of the properties of solutions of the equations of one-di- 

mensional unsteady motion of a perfect gas in the presence of shock 

waves, discontinuous exact solutions are of great interest. 

At the present time, exact discontinuous solutions are obtained only 

in special cases of self-similar problems [l ‘1. To obtain new exact solu- 

tions, the particular solution of the equations of gas dynamics published 

by Sedov [ 1, 2 1 may be used, namely 

Here v is the velocity, p the density, p the pressure, P(r) an arbit- 

rary function, r the distance from the center of symmetry, t the time, 

p = p(t) a function of time, A. B, C are arbitrary constants, s is a 

constant, v = 1. 2, 3 corresponds to the case of plane, cylindrical and 

spherical waves, respectively, y is the adiabatic index, 6 = rp is the 

Lagrangian coordinate, x = t”-*. 

An attempt to employ the Sedov salution for the construction of solu- 

tions with shock waves was made by Keller [3 1. Below a method of solu- 

tion is developed for the case when the shock wave is propagated through 

a gas at rest, whose density pi = p,(r) is variable and whose pressure 

p1 is constant. If r2(t) is the radius of the shock wave, then let 

2% = v 0, r2), P2 = P (1, r2h p2 = P @, r2) 

To construct a closed solution, it is necessary to determine the law 

of motion of the shock wave r*(t) and to find the function P(x). 

We shall assume further that the function p,(r) is known in advance. 

The unknown functions r2 (t), P(X), p,(r) will be determined from the 
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requirement that the solution (1) satisfies the boundary conditions at 
the front of the shock wave 

z+! = y+ (1 - q) 0, 
Yf-i PI 2Y-(Y--1)cl 

P2 =Y__l +Q#PI, -- Pz-Y+l Q 
(9 

where 

dr2 YPl 
C=x' 4=plc" 

From the first equation (1) and the first condition (2) we have 

q_-if+$..$ 

Using the second and the third condition (2) and the values of p2 and 

p2 from (1). we may eliminate the arbitrary function P(X). We obtain then 
the equation 

cl’=-4 { +[2Y-_(Y--1M + 
Bv (y - 1) (y + I)8 (r&42) p”(‘-“)-4 

8 (Y - 1 + 3) (rz’)* [A.+ qL”(Y-1) 1 (4) 

This procedure to eliminate the arbitrary function P(x) was indicated 

to the authors by Sedov. 

Primes in equation (4) indicate differentiation with respect to p. In 
the following p will be considered as the independent variable. 

Eliminating the function q(p) from (3) and (4). and introducing the 
substitution y = (ln r2)‘, we obtain a first order Riccati equation for 

Y(P) 

J&q+ v-1+ 
[ 

V(Y--1) pV(Y-1) 

2 

%+ pv(Y-l) 1 Y- 

x(y"-l)v A - Xr=--- 
4p2 [x + pv+--lf I ’ B (5) 

Knowing the solution y = y(p) of this equation we may, using formula 
(3), find the function q(p) or q(r,), and therefore, also p,(r). 

Having determined p2 (c,) and p2(e2;) by formulas (2). it becomes 
possible, using (1). to find the function P(X), that is, to solve complet- 
ely the stated problem. The solution of equation (5) for K f 0 and arbit- 
rary y is not expressible in simple form through elementary functions, 

Let us consider several special cases. 

1). K= 0. In this case the value of the quantity B is immaterial and 
it can be taken equal to unity. 

Equation (5) is easily integrated and has the solution 

y &) = p%~(Y+l)-l c1 1 __21 
(1 Y+i Cl 

g4Y(Y+l) --I I\ (6) 

From this the functions r,(p) and q(p) are easily found 
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Here cl and c2 are the constants of integration. 

From formula pi = ypl/c2q we can find pi(p). Eliminating P from the 

functions r2(p) and pl(P) we obtain 

p1 (F2) = yp1q2V cc > yq @+I1 cl@--lr2- (ra’ - ca’) 8 I-’ (8) 

where 

3yv+4-v 

p= v(yf1) ’ 
v(3-~)+2+1) 

0= 
Y+i 

The function p(t) in this case is of the form 
1 -- 

p 0) = [cs ‘F 4 
k 

, k=+v(y-Q+ 1 (9) 

where c3 is a constant of integration. Using (‘7) and (9) we find the law 
of motion of the shock wave 

ra (t) = c.J 
[ 
1 - - Yll+ (C+-v%?]-+ (19) 

Using formulas (l), (2) and. (7) it is a simple matter to determine all 
the characteristics of motion at the front of the shock wave 

2Y cz v 
pz=p1 I--- - 

( >I Y+1 r2 

Let us now find the arbitrary function P(x). Since t2 = r2p we obtain 
from (7) 

2 1 yi-lv .-L 
caY’P + - ~ 

Yfl Cl 
9 2 r,stz - x2 s + 2 = 0 (9 (2) = p?(r)) 

From equations (11, (2), (7) we obtain 

P (x2) = 
2 (8 + 2) Pl 

[ ( l---Y -- 
v(y--1) y-+1 pVY + 

-$ -$ &1-u)) _ c] 
Thus, to satisfy the boundary conditions (2). P(x) has to be taken in 

the form 

p @) = 2 (8 + 2) 
“(y_1) [*(y++&p=)-“1 w4 

where 4(z) is to be found from the equation 
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2). B-0. In this osse we find from (4) 

From (1) and (3) we obtain 

Just as in the previous case, it is easy to find pi(r2), u2 (r2), 

P*b2h p,tr,L as well as the form of the arbitrary function P’{x), 

3). y= I, Equation f4) csn be integrated in this case. A study of 
this solution will not be presented here. The general solution of equa- 
tion (5) for K # 0 and arbitrary y may be obtained, using some particular 
solution. 

We now proceed to the evaluation of the energy, The law of eons%rva- 
tion of energy my be written down in the form 

Ql 
I?+“------ ‘,, Y ‘” =d 

v(y-i)(” -r ) 

where E is the energy evolved in a certain period of time in a volume en- 
closed by radif PI and r**, and different from kinetic or thermal 
energies of the gss {this could be. for exaarple, tbe energy given off in 
an explosion1 

0” = 2x (v - 1) + (v - 2) (v - 3) 

The second term in the left-hand side of equation 114) determines the 
initial internal energy of the gas. 

The right-hand side of equation (141 represents the energy of the gas, 
which was set in motion by the shock wave. 

Using (I) and transforming the integral on the right-hand side of (141, 
we obtain a simple expression for the calculation of the energy balance 

employing the results obtained above, it is possible to solve a non- 
self-simflar problem of a point-blast in a gas, whose initial density is 
variable. 

In fact, from (1) and f151, letting d = 0, rC*t 0, r’f.= F2 and assum- 
ing that I is the energy given off instantaneously in a blast. we obtain 
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[ 

v(y-1) I3 1 1 
Pz = PI I+ _- 

=v Pl r2V 
_I 

From (81, (11) and (16) we find the initial density distribution 

(f6) 

where r” is the dynamical length. 

From (17) it is seen that p,(r) depends parametrically on y and r”. 
Noting that r*(6) = 6. we obtain c3 = 0. Taking u > 0 and using Cl), flz), 
(131. we find that the solution of this problem is of the form 

Thereby, c$(& ) 0 is found from the equation 

According to (16). the pressure change directly behind the shock wave 
front is given by the formula 

p2 = p1 1 + v (Ym-- I) l&-j 
[ Y 

In the particular case when c1 = 0, pi = 0, we obtain the known solu- 
tion [ 1 ] of the self-similar problem of the point-blast, for which the 
initial gas density varies in accordance with the law p1 = A1r-# , where 
A1 is some constant, 

It should be pointed out further, that the solutions studied here may 
be used for problems of motion of a gas in a plane, cylindrical or 
spherical piston. From the condition of equality of piston velocity and 
the velocity of gas particles adjacent to the piston, we have 

1 d’;l 1 dt* -- 
p7l dt ==I-~~ 

where r,, is the radius of the piston. 

From this we obtain rn = kl/p, where ki is a constant of integration. 
Using (l), we find the piaton velocity 

If p(t) is known, and the arbitrary function P(x) is also found, then 
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the piston problem is solved. 

The authors express their deep gratitude to L.I. Sedov for his interest 

in this work and his valuable advice, 

BIBLIOGRAPHY 

1. Sedov, L. I., Metody podobiia i rasnernosti v nckhanike (Methods of 
similarity and dimensional analysis in nechanics). 4th edition, 

Moscow* 1957. 

2. Sedov, L. I., Ob integrirovanii uravnenii odnomernogo dvizheniia gaza 
(on the integration of the equations of one-dimensional gas flow). 

Do&l. A&ad. Nauk SSSB Vol. 90. NO. 5, 1953. 

3. Keller, J.B., Spherical, cylindrical and one-dimensional gas flows. 

Quart. Appl. Math. Vol. 14, NO. 2, pp. 171-184, 1956. 

Translated by G.H. 


