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In the study of the properties of solutions of the equations of one-di-
mensional unsteady motion of a perfect gas in the presence of shock
waves, discontinuous exact solutions are of great interest.

At the present time, exact discontinuous solutions are obtained only
in special cases of self-similar problems [1 ]. To obtain new exact solu-
tions, the particular solution of the equations of gas dynamics published
by Sedov [1, 2 ] may be used, namely
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Here v is the velocity, p the density, p the pressure, P(x) an arbit-
rary function, r the distance from the center of symmetry, t the time,
g = u(t) a function of time, A, B, C are arbitrary constants, s is a
constant, v = 1, 2, 3 corresponds to the case of plane, cylindrical and
spherical waves, respectively, y is the adiabatic index, £ = ru is the
Lagrangian coordinate, z = &2,

An attempt to employ the Sedov solution for the construction of solu-
tions with shock waves was made by Keller [3 ]. Below a method of solu~
tion is developed for the case when the shock wave is propagated through
a gas at rest, whose density py =py(r) is variable and whose pressure
Py is constant, If rz(t) is the radius of the shock wave, then let
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To construct a closed sclution, it is necessary to determine the law
of motion of the shock wave rz(t) and to find the function P(x).

We shall assume further that the function p, (r) is known in advance.
The unknown functions r,(t), P(x), p,(r) will be determined from the
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requirement that the solution (1) satisfies the boundary conditions at
the front of the shock wave
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From the first equation (1) and the first condition (2) we have
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Using the second and the third condition (2) and the values of p, and
P, from (1), we may eliminate the arbitrary function P{x). We obtain then
the equation
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This procedure to eliminate the arbitrary function P(x) was indicated
to the authors by Sedov.

Primes in equation (4) indicate differentiation with respect to p. In
the following p will be considered as the independent variable,

Eliminating the function ¢(p) from (3) and (4), and introducing the
substitution y = (In rz)', we obtain a first order Riccati equation for
()
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Knowing the solution y = y(u) of this equation we may, using formula
(3), find the function q(u) or q(r,), and therefore, also p,(r).

Having determined p,(£,) and pz(fé) by formulas (2), it becomes
possible, using (1), to find the function P(x), that is, to solve complet-
ely the stated problem, The solution of equation (5) for x # 0 and arbit-
rary y is not expressible in simple form through elementary functions.

Let us consider several special cases.

1). ¥ = 0. In this case the value of the quantity B is immaterial and
it can be taken egqual to unity,
Equation (5) is easily integrated and has the solution
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From this the functions r,(p) and g(u) are easily found
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Here 4 and t, are the constants of integration.

From formula Py = ypl/czq we can find p,(p). Eliminating p from the
functions r,(u) and py{p) we obtain
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The function p(t) in this case is of the form
1
w0 =les Fhe] *, k=Ly(y—1)+1 ©)
where c, is a constant of integration. Using (7) and (9) we find the law
of motion of the shock wave
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Using formulas (1), (2) and, (7) it is a simple matter to determine all
the characteristics of motion at the front of the shock wave
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Let us now find the arbitrary function P(x). Since §2 = r,p we obtain
from (7)
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From equations (1), (2), (7) we obtain

264+2) [ (11—~ 4y 1 v
P(xz)zv(Y—"i) [y+i< WY +y+‘l—c—; 2 ¢ Y))—C]

Thus, to satisfy the boundary conditions (2), P(x) has to be taken in

the form
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where ¢5(z) is to be found from the equation
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2). B=0, In this case we find from (4)
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From (1) and {3) we obtsain
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Just as in the previous case, it is easy to find p (rz), vz(r Y.
pz(rz}. pz(rz), as well as the form of the arbitrary function P {2z},

3). ¥ = 1, Equation (4) can be integrated in this case. A study of
this solution will not be presented here. The general solution of equa-
tion (5) for x # 0 and arbitrary y may be obtained, using some particular
solution,

¥e now proceed to the evaluation of the energy. The law of conserva-
tion of energy may be written down in the form
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where E is the energy evolved in a certain period of time in a volume en-
closed by radii r” and +”7, and different from kinetic or thermal
energlies of the gas (this could be, for example, the energy given off in
an explosion)
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The second term in the left-hand side of equation {14) determines the
initial internal energy of the gas.

The right-hand side of equation (14) represents the energy of the gas,
which was set in motion by the shock wave,

Using {1} and transforming the integral on the right-hand side of (14),
we obtain a simple expression for the calculation of the energy balance
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Employing the results obtained sbove, it is possible to solve & non-
self~similar problem of a point-blast in a gas, whose initial density is
variable.

B ik

In fact, from (1) and (15), letting A= 0, r" = 0, r*’ = r, and assum-
ing that E is the energy given off instantaneously in a blast, we obtain
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From (8), (11) and (16) we find the initial density distribution
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where rC is the dynamical length,

From (17) it is seen that p, (r) depends parametrically on y and r0,

Noting that rz{O) = 0, we obtain €3 = 0. Taking v > 0 and using (1), (12},
(13), we find that the solution of this problem is of the form
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Thereby, ¢(£) > 0 is found from the equation
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According to (18), the pressure change directly behind the shock wave
front is given by the formula
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In the particular case when €y = 0, Py = 0, we obtain the known solu-
tion[1] of the self-similar problem of the point-blast, for which the

initial gas density varies in accordance with the law p, = Aif"“’, where

A1 is some constant,

It should be pointed out further, that the solutions studied here may
be used for problems of motion of a gas in a plane, cylindrical or
spherical piston. From the condition of equality of piston velocity and
the velocity of gas particles adjacent to the piston, we have
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where Tn is the radius of the piston.

From this we obtain r = k,/p, where k, 1s a constant of integrationm.
Using (1), we find the piston velocity

dr,
@ = TR+ Bt

If p(t) is known, and the arbitrary function P(x) is also found, then

1
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the piston problem is solved.

The authors express their deep gratitude to L.I. Sedov for his interest
in this work and his valuable advice,
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